header


  

Nachweise

11.10.2021 Druckversion  |  Schrift: vergrößern verkleinern 

Nachweise zu: Michael Drieschner, Quantenphysik verstehen, Heft 3/2021

 

Nachweise zu:
Michael Drieschner, Quantenphysik verstehen, Heft 3/2021

(1) Schrödinger, E.: 1926. Ann.Phys. 79 ,361, 489, 734; 80, 437; 81, 109

(2) Heisenberg, W.: 1925: Zeitschrift für Physik 33, p. 879


(3) Pierre Simon de Laplace, Essai philosophique sur les probabilités. Paris 1814

(4) Max Born, ‘Zur Quantenmechanik der Stoßvorgänge.’ Zeitschrift für Physik 37, 863–867. hier S. 865

(5)  cf. Michael Drieschner, Found. Phys. 46(2016)28–43 [https://rdcu.be/bOQC0]

(6) Vgl. den Artikel in Wikipedia: <https://de.wikipedia.org/wiki/Interpretationen_der_Quantenmechanik>

(7) Christopher A. Fuchs, Asher Peres: “Quantum Theory needs no ‘interpretation’”. Physics Today, März 2000, S. 70-71; hier S.70. Der Text lautet auf englisch: “The thread common to all the non-standard ‘interpretations’ is the desire to create a new theory with features that correspond to some reality independent of our potential experiments. But, trying to fulfill a classical worldview by encumbering quantum mechanics with hidden variables, multiple worlds, consistency rules, or spontaneous collapse, without any improvement in its predictive power, only gives the illusion of a better understanding. Contrary to those desires, quantum theory does not describe physical reality. What it does is provide an algorithm for computing probabilities for the macroscopic events (“detector clicks”) that are the consequences of our experimental interventions. This strict definition of the scope of quantum theory is the only interpretation ever needed, whether by experimenters or theorists.”

(8) Cord Friebe; Meinard Kuhlmann; Holger Lyre; Paul M. Näger; Oliver Passon; Manfred Stöckler: Philosophie der Quantenphysik: Zentrale Begriffe, Probleme, Positionen. Cham (Springer) 22018, S. 49

(9)  https://plato.stanford.edu/entries/qt-quantlog/; chapter 1.4

(10) Der englische Originaltext lautet [L(H) ist hier der genannte Gesamtverband]: “The point to bear in mind is that, once the quantum-logical skeleton L(H) is in place, the remaining statistical and dynamical apparatus of quantum mechanics is essentially fixed. In this sense, then, quantum mechanics—or, at any rate, its mathematical framework—reduces to quantum logic and its attendant probability theory.”

(11) Varadarajan, V. S., Geometry of Quantum Theory,  Princeton, N.J. [u.a.], van Nostrand, 1968/1970; New York (Springer) 1985, etc.

(12) Im Original: “For a long time it has been a desire within the community for finding rather comprehensible postulates that imply the structure of quantum mechanics.”

(13) vgl. Kapitel VI.1 in: Johann von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932)

(14) Albert Einstein, B. Podolsky, N. Rosen. Can Quantum Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47(1935)777.

(15)  Im englischen Original: “If, without in any way disturbing a system, we can predict with certainty (i. e. , with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity.”

(16) D. Bohm, Quantum Theory, New York (Prentice Hall) 1951.

(17) J. S. Bell: On the Einstein Podolski Rosen Paradox. Physics 1(1964)195; Wieder abgedruckt in: J. S. Bell: Speakable and Unspeakable in Quantum Mechanics. Cambridge (UP) 1987

(18) Johann von Neumann, Mathematische Grundlagen der Quantenmechanik.  Berlin (Springer) 1932,
S. 222

(19) Michael Drieschner, A Note on the Quantum Mechanical Measurement Process.
philosophia naturalis 50(2013)201–213

(21)  Oliver Passon: Bohmsche Mechanik. Eine elementare Einführung in die deterministische Interpretation der Quantenmechanik. Harri Deutsch, Frankfurt, 2004, ISBN 978-3-8171-1742-0.

(22) Hugh Everett: “Relative State” Formulation of Quantum Mechanics. Rev. Mod. Phys. 29(1957)454; John A. Wheeler: Assessment of Everett's "Relative State" Formulation of Quantum Theory. Rev. Mod. Phys. 29(1957)463; Bryce DeWitt: Quantum mechanics and Reality. Physics Today, Sept. 1970, 30-35.







© Information Philosophie     Impressum     Datenschutz     Kontakt